An Initial Value Problem for Two-Dimensional Ideal Incompressible Fluids With Continuous Vorticity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Initial Value Problem for Two-dimensional Ideal Incompressible Fluids with Continuous Vorticity

We study an initial value problem for the two-dimensional Euler equation. In particular, we consider the case where initial data belongs to a critical or subcritical Besov space, and initial vorticity is continuous with compact support. Under these assumptions, we conclude that the solution to the Euler equation loses an arbitrarily small amount of regularity as time evolves.

متن کامل

The Inviscid Limit for Two-dimensional Incompressible Fluids with Unbounded Vorticity

In [C2], Chemin shows that solutions of the Navier-Stokes equations in R for an incompressible fluid whose initial vorticity lies in L ∩ L∞ converge in the zero-viscosity limit in the L–norm to a solution of the Euler equations, convergence being uniform over any finite time interval. In [Y2], Yudovich assumes an initial vorticity lying in L for all p ≥ p0, and establishes the uniqueness of sol...

متن کامل

A ug 2 00 6 Confinement of vorticity in two dimensional ideal incompressible exterior flow

In [Math. Meth. Appl. Sci. 19 (1996) 53-62], C. Marchioro examined the problem of vorticity confinement in the exterior of a smooth bounded domain. The main result in Marchioro’s paper is that solutions of the incompressible 2D Euler equations with compactly supported nonnegative initial vorticity in the exterior of a connected bounded region have vorticity support with diameter growing at most...

متن کامل

Uniqueness for Two-Dimensional Incompressible Ideal Flow on Singular Domains

We prove uniqueness of the weak solution of the Euler equations for compactly supported, single signed and bounded initial vorticity in simply connected planar domains with corners forming angles larger than π/2. In this type of domain, the velocity is not log-lipschitz and does not belong to W 1,p for all p, which is the standard regularity for the Yudovich’s arguments. Thanks to the explicit ...

متن کامل

Euler Equations of Incompressible Ideal Fluids

This article is a survey concerning the state-of-the-art mathematical theory of the Euler equations of incompressible homogenous ideal fluid. Emphasis is put on the different types of emerging instability, and how they may be related to the description of turbulence.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2007

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2007.v14.n4.a3